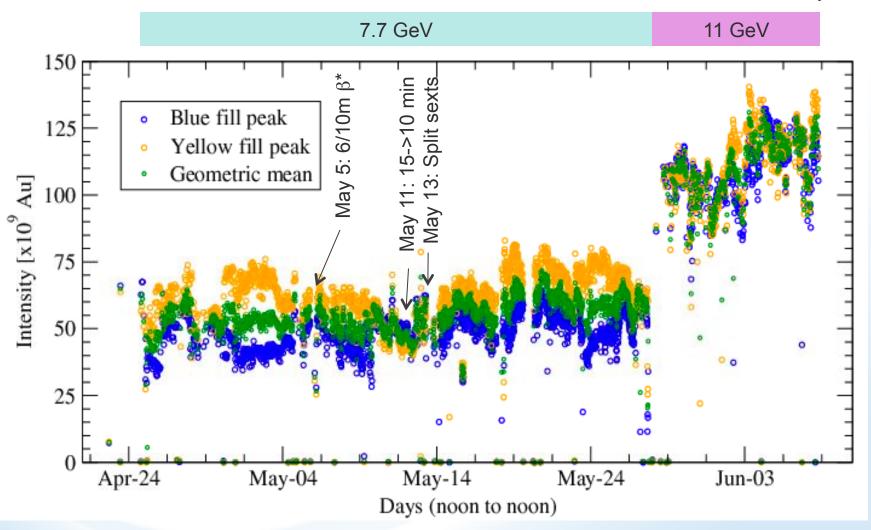
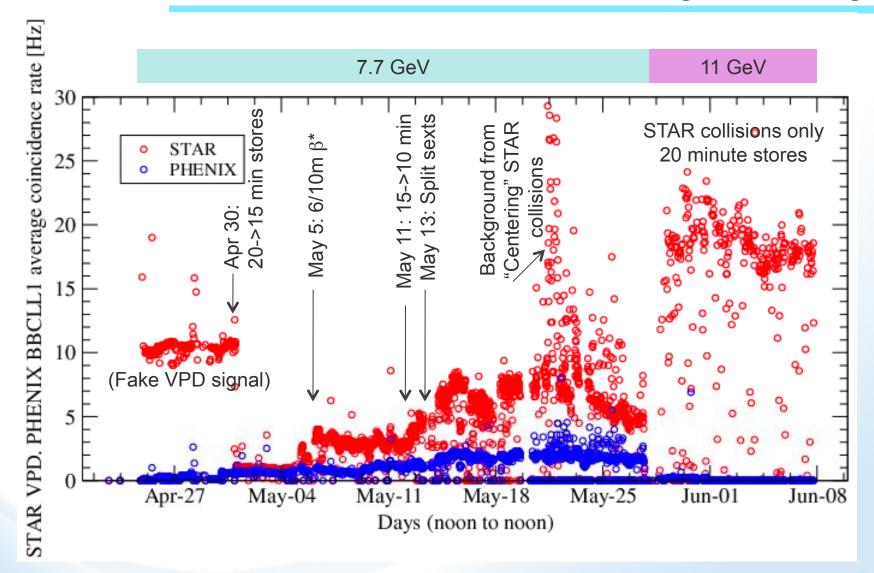
Retrospective of RHIC Low Energy 2010


√s _{NN} [GeV]	Start date	End date	# Days
200	Dec 5 2009	Mar 18	103
62.4	Mar 18	Apr 9	22
39	Apr 9	Apr 22	13
7.7	Apr 22	May 27	35
11.5	May 27	Jun 7	11
5 (test)	Jun 7	Jun 9	2.5

- Just what is "low energy"? Some confusion!
 - STAR BUP BES (beam energy scan): up to √s_{NN}=39 GeV
 - C-AD "low" = below injection: up to $\sqrt{s_{NN}}$ =20 GeV
- A mix of where we were and lessons learned
 - Even though we may not run at these energies again

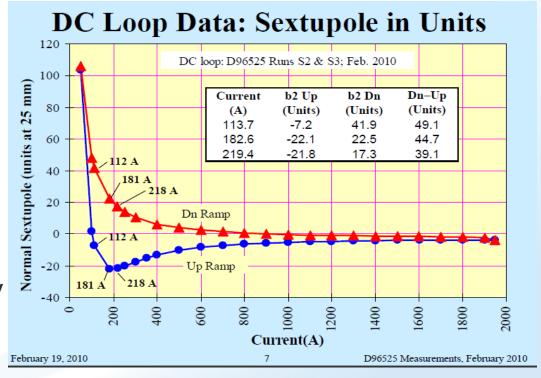

General Comments: Intensity History

STAR collisions only

General Comments: "Luminosity" History

General Comments: "Luminosity"

- Scaler/trigger changes made luminosity counting tough
 - Understandable in a background-rich short run
 - Emphasis on # of good events rather than integrated lumi
 - Short runs/config made luminosity counting hard for pfi/lla
 - Reconciling logged data in the future will be challenging
 - BUT clean counters were also critical to success of run!
- STAR rate roughly scaled as γ^3 : $(6.18/4.14)^3 = 3.33 \sim 20/6$
 - Consistent with previous experience
 - This scaling clearly does NOT hold down to 5 GeV
- Recommendations
 - Integrated lumi program should be configurable
 - Use only raw logged scaler channels
 - Require detailed documentation of experiment scaler configuration changes

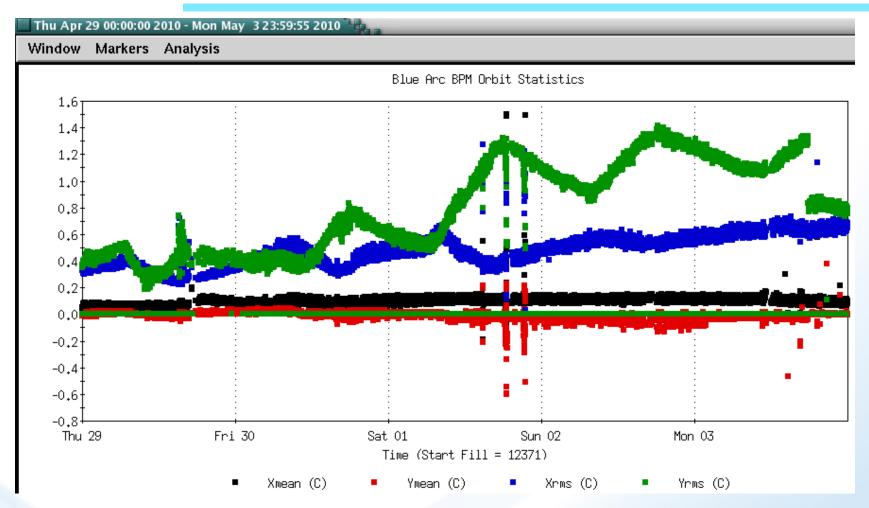


General Comments: Magnetic Measurements

- Dipole/quad cold measurements from Animesh Jain
- Reduce main dipole b2, lattice nonlinearity

I hope it will be much simpler to just try a cycle to ~350-400A with down ramp operation directly in RHIC. Even if you do not hit exactly zero, you should get at least a factor of 2-3 reduction in b2.

- Animesh
- Did not use this data effectively
 - No tracking
 - Up/down ramp confusion
 - Design ramps with optimal nonlinearity tradeoffs for future
 - More measurements?



General Comments: Collimation

- Injecting with collimators in was also critical for success
 - Permitted experiments to stay on even at lowest energy
 - Localized injection losses
 - Gave PHENIX clean enough conditions to run at all
 - Gave STAR clean enough conditions to improve triggers
- Collimators needed constant caretaking
 - Angelika was often retuning collimators
 - Even small changes become very significant when collimators are pushed in to a few beam sigma
 - Becomes an orbit correction disincentive (oddly enough)
 - Which also has some benefits...

General Comments: Orbit Data Mining

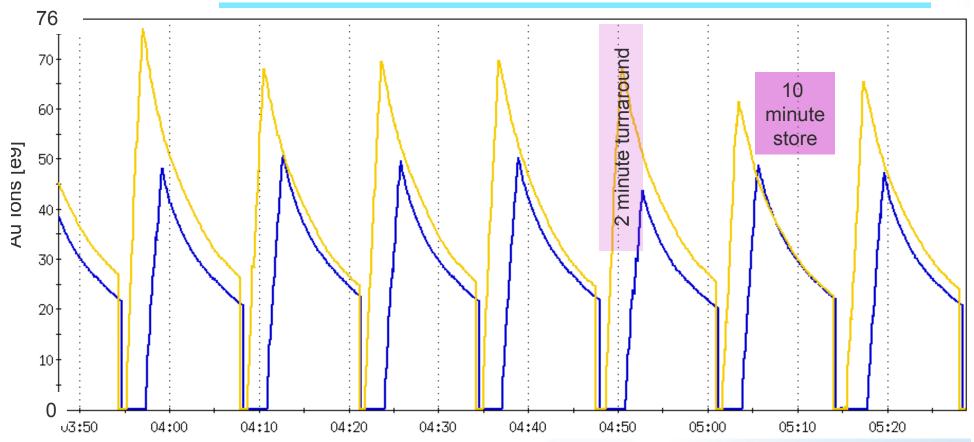
- Days of many orbits with very few machine changes
 - Great statistics to evaluate details of magnet/thermal drift

√s_{NN}=7.7 GeV: Challenges

- Losses and loss management
 - Monitoring of chronic loss accumulation through run
 - Permitted 20 min to 15 min to 10 min store lengths
 - Weekly report to RSC, daily vigilance by run coordinator
 - There will be an AP note documenting low energy losses
- Beta squeeze, β*=10m to 6m in STAR
 - Tried PHENIX too, but failed to understand backgrounds
 - Both improvements gave at least x4 lumi improvement
- Injection efficiency limited by pitching/coll/abort losses
 - U to X/Y transformer efficiencies: 90-95%
 - But calibrations about transformer calibrations...
- Many small difficulties overcome
 - Orbit correction, gap cleaning, chrom control, collimation...

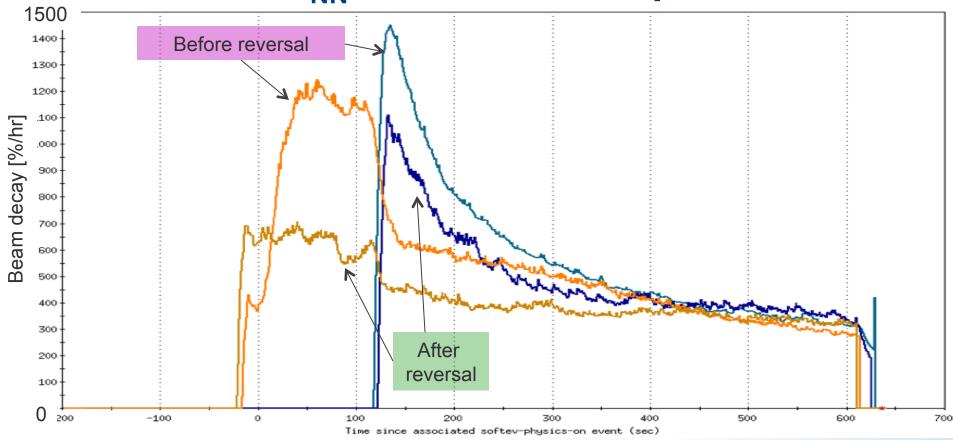
√s_{NN}=7.7 GeV: Loss Management

- Loss management was critical to the success of 7.7 GeV
 - Thanks to Dana Beavis / RSC
 - Thanks to BLM folks for extra BLMs around RHIC injection
- Wrote log analysis scripts to evaluate/correlate/integrate BLM losses
 - Prioritized, flagged outliers
 - ~90% of losses in capped areas of abort/collimators/ lambertsons
- Dominated by ATR losses
- Documentation (AP note) is a post-run deliverable


```
Table 1: Low energy losses tabulated by total losses and number
  fills, for fills 12594-13607, sqrt(sNN)=7.7 GeV.
                         Total/Avg Losses
            %TotLosses
                           99.71+/- 146.2 \forall7-lm3.2-c
             15.2 + / - 7.8
                            5.27+/- 64.6 b10-lm3.5-dmp
             13.9+/- 9.0 114.06+/- 314.2 b8-lm3.2-c
                           17.50+/- 203.6 y9-lm3.5-dmp
       1005
              8.8 + / - 3.3
        830
                           8.0+/- 8.5
              6.1+/- 2.0 111.93+/- 244.8 y7-lm3.4-c
              2.9+/-1.2 122.06+/-115.7 68-lm3.4-c
                           75.16+/- 363.8 b6-lm11-atr
              2.6+/-3.1
                           99.36+/- 475.0 b6-lm10-atr
              1.6+/- 1.1 170.48+/- 888.7 b9-lm3.6-dmp
              8.8+/-15.1 434.86+/- 637.5 q7-mlmx.1
              2.5+/- 3.0 352.45+/-1019.0 b10-lm3.7-dmp
              2.3+/- 1.7 471.05+/-1103.2 b10-lm3.9
              4.2+/- 4.9 1273.73+/-2200.4 v7-lm3.2
              2.5+/- 2.3 838.40+/-1835.5 y9-lm4
              4.0+/- 7.9 1278.67+/-1531.2 b6-lm-lamb
                          738.70+/-1328.6 b10-lm4
              2.2+/- 1.6 880.62+/- 955.3 g9-lm5
2.0+/- 1.2 210.77+/- 739.0 y10-lm3.6-dmp
              2.6+/- 2.1 2026.33+/-1911.9 b10-lm3.3-ka
              2.9+/- 3.6 990.01+/-1734.2 b9-lm4
              2.8+/-2.0 1124.10+/-1360.3 y9-lm3.3-ka
                          632.17+/-1026.9 v10-lm4
              2.2+/- 2.1 699.81+/- 999.5 b6-lm3.2
              2.1+/- 1.3 1513.97+/-1228.7 b10-lm3.4-ka
              3.8+/- 4.1 1750.21+/-2319.0 b10-lm3.2-ka
              2.3+/- 1.4 1438.46+/-1743.0 y9-lm3.4-ka
              3.0+/-2.7 2357.14+/-2502.1 \sqrt{9}-lm3.2-ka
```

√s_{NN}=7.7 GeV: Beta Squeeze

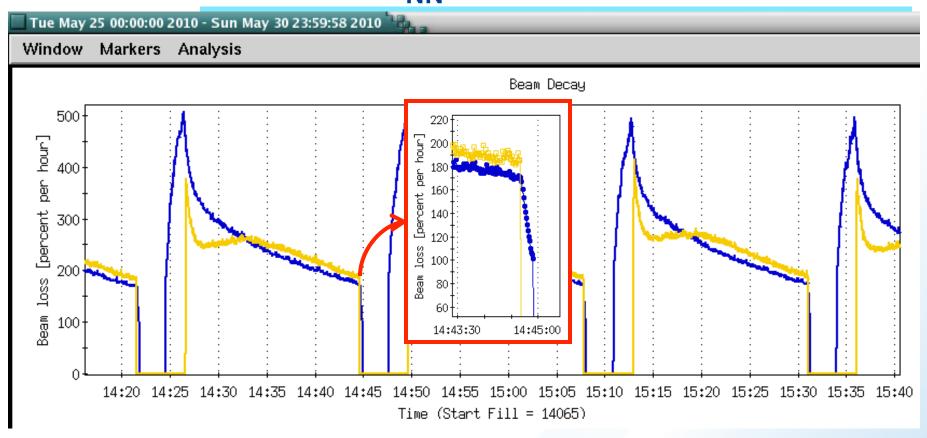
- Thanks to Dejan for pushing a "crazy" idea
 - In retrospect not so crazy after all
 - Nearly doubled luminosity at STAR
- But I think we (or rather I) got lucky
 - Squeeze created significantly more scattering background
 - A lot of these can't be collimated
 - Have to count on experiments to have a way to reject them
 - PHENIX doesn't have good enough vertex reconstruction resolution to reject beam-beampipe backgrounds
 - Did not understand this until well into beta squeeze study
 - Fortunately STAR did
 - Hence 6m/6m squeeze didn't work (killed PHENIX)
 - But 6m/10m squeeze did



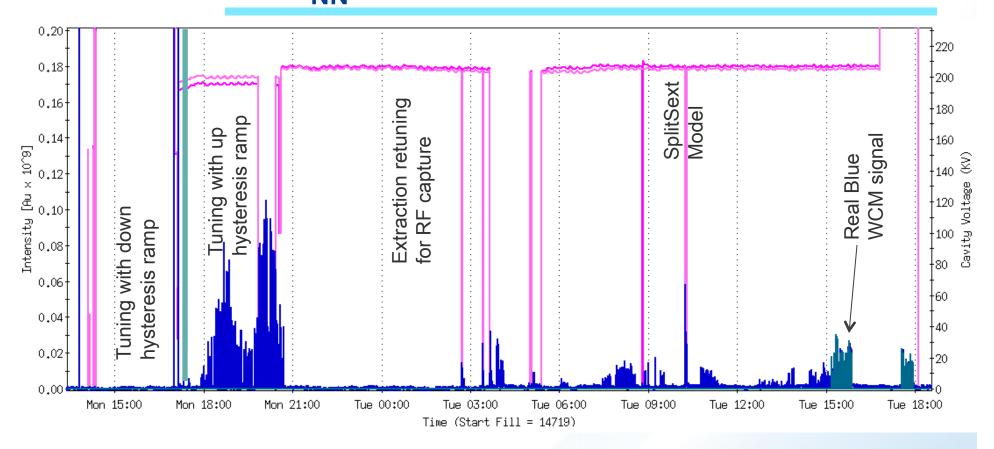
√s_{NN}=7.7 GeV: Keeping Operations Busy

- Operations was superlative with very fast turnarounds
 - Time in physics was often 80%, ~2 minute turnarounds
 - Very close to optimal given lifetime and tuning conditions

√s_{NN}=7.7 GeV: Sextupole Reversal


- Reversing half of sextupole families = "bipolar" sextupoles
- Beam decay significantly improved by adjusting chroms
- ~30% improvement in integrated luminosity
- Difficult to predict: sextupole currents are <1A

$\sqrt{s_{NN}}$ = 11.5 GeV: Comments


- Many thanks to Greg, Angelika, and Vincent
 - Greg was the real run coordinator for this run
 - About 16h to physics from beam setup start
 - Some evidence of instabilities with high beam currents
 - Store length rapidly shortened to 1h, then 20 minutes
 - A challenge to cog to STAR collisions properly with h=363
- A big success, almost clockwork
 - Easier after 7.7 GeV challenges
 - Benefitted from "bipolar" sextupole configuration, no switch
 - Beam decay down a factor of ~4, intensity up x2.5

√s_{NN}= 11.5 GeV: Beam-Beam

- 11.5 GeV routinely showed strong beam-beam signatures
 - Beam decay improvement at when colliding beam dumped
 - Unexpected for single head-on collision: parasitic collisions?

√s_{NN}= 5 GeV/u Blue Beam Currents

- Some limited blue beam seen on blue WCM! (2.5e7)
- Peak DCCT 1.1e8 unbunched, 8e7 "bunched", 2e7 bunched
- Blue final lifetimes: 4s(65%)/40s(35%), peak 2e7

BROOKHAVEN NATIONAL LABORATORY

$\sqrt{s_{NN}}$ = 5 GeV: Some Lessons Learned

- Hysteresis for up ramp created several problems
 - Turned synchro off (AGS U2 instead of U1)
 - Turned RF cavities on, unnoticed for 2 hours!
 - Corollary: downramp test requires new fieldfits in ramp
- RF capture was much harder than expected
 - Neglected energy loss (~1%?) from stripping foil
 - 2.9 kHz (1e-4 df/f) off frequency in RHIC!
 - Chased tails with AGS/RHIC configurations (+15mm bump!)
 - Final solution sacrificed AGS/ATR to maintain RHIC
 - Leftover concerns from downramp transfer function issues?
- Chromatic control was not consistent early in test
 - Proper split sextupole model installed Tuesday morning
 - Much better chromaticity tuning behavior afterwards

√s_{NN}= 5 GeV: Some More Lessons Learned

- It's very hard to tune beam that has...
 - 10-30 turns of longitudinal decoherence with RF off
 - 10-30 turns of transverse decoherence with RF on
 - basically no bunched beam lifetime, limited BPMs
 - Intensity, intensity, intensity
- Chromaticity model is particularly important
 - Decoherence and momentum aperture are challenging
 - Starting in vaguely the right place would help
 - Bucket dp/p 1e-3; should be able to scan 5-10 chrom units
 - Looked like machine was dominated by nonlinearities
 - A show-stopper for cooling at this energy if true
- Aperture was always in the abort area
 - Study details of longitudinal and transverse apertures

General Comments: Great Support!!

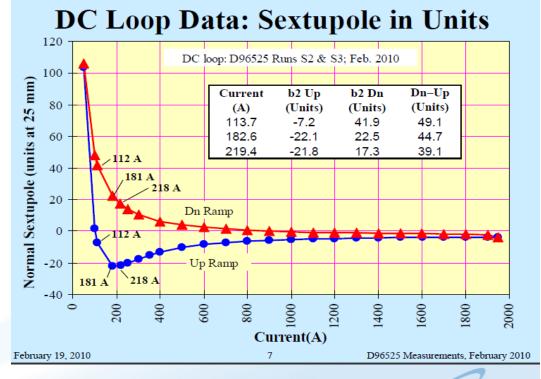
- LLRF for figuring out how to avoid blue cogging glitches
 - Allowed PHENIX to run continuously => 10 min stores
- LLRF/Instrumentation for harmonic number support
 - Danced through several harmonic numbers (363, 366, 387)
- Vincent for ATR loss vigilance
 - ATR losses were limiting radiological issue for low energy
- Angelika for collimator vigilance
 - Aggressive collimation was required for entire run
- Operations for weeks of 2 minute turnarounds
- Greg for 11.5 GeV coordination
- Everyone for all the support that made low energy (and in particular 7.7 GeV) such a success

Low Energy Parameters

	Au nom injection	Au 2007-8	Au 2008/10	Au 2010	Au 2010
√s _{NN} [GeV]	19.6	9.18	5.0	7.7	11.5
Baryochemical potential μ_B [MeV]	197	360	535	405	305
Beam energy [GeV/u]	9.8	4.59	2.5	3.85	5.75
Beam kinetic energy [GeV/u]	8.87	3.66	1.57	2.92	4.82
Relativistic γ	10.53	4.93	2.68	4.14	6.18
Relativistic β	0.995	0.979	0.928	0.970	0.987
Momentum [GeV/c]	9.76	4.50	2.32	3.736	5.674
Rigidity Bρ [T-m]	81.15	37.40	19.30	31.07	47.20
RF harmonic number	360	366	387	369	363
RF frequency [MHz]	28.1	28.03	28.08	28.00	28.01
Max beam size (95%) $\hat{\sigma}$ [mm]	10.48	15.32	21.32	16.81	13.64
Beam/ring time available		27/30.5h	(1-2d?)	4wks	(2wks)
Luminosity [x10 ²³ cm ⁻² s ⁻¹]	(20-80)	1.2-3.5		(~10)	(~30)

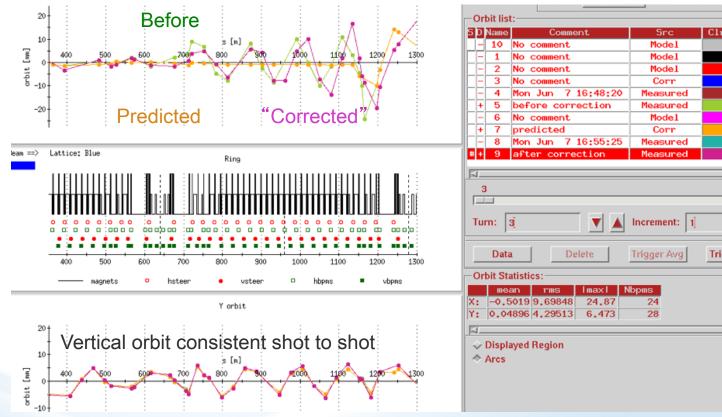
RHIC full aperture at β_{max} is 113 mm; at 7.7 GeV this is ±3.3 $\sigma_{\text{max}}(95\%)$

(μ_B from Andronic, Braun-Munzinger, Stachel, Nucl Phys A 772, 2006)

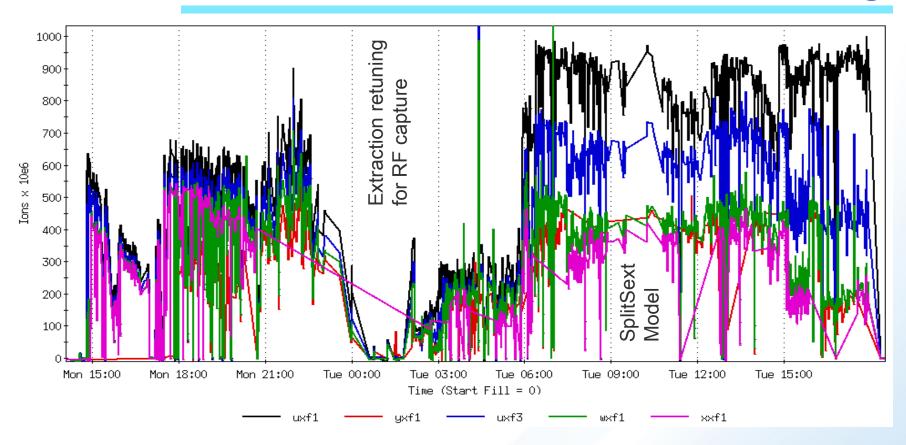


E=2.5 GeV/u Downramp Hysteresis

- Suggested in discussions with Alexei, Animesh Jain
- Objective is to reduce main dipole b2, lattice nonlinearity

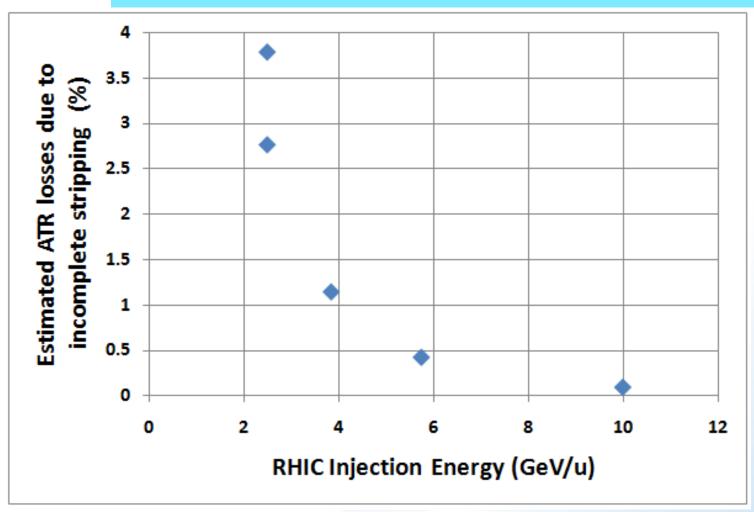

I hope it will be much simpler to just try a cycle to ~350-400A with down ramp operation directly in RHIC. Even if you do not hit exactly zero, you should get at least a factor of 2-3 reduction in b2.

- Animesh
- But neglected dipole, quad transfer matrix changes of ~1% (!!)
- Clearly observed in bad tunes, radius
- Rescaling strengths was perceived to be time prohibitive

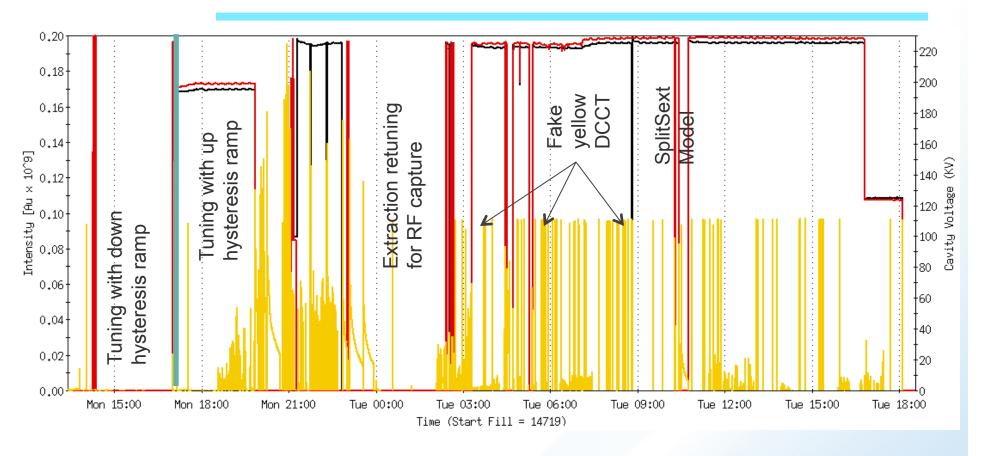


E=2.5 GeV/u Downramp Orbit Correction

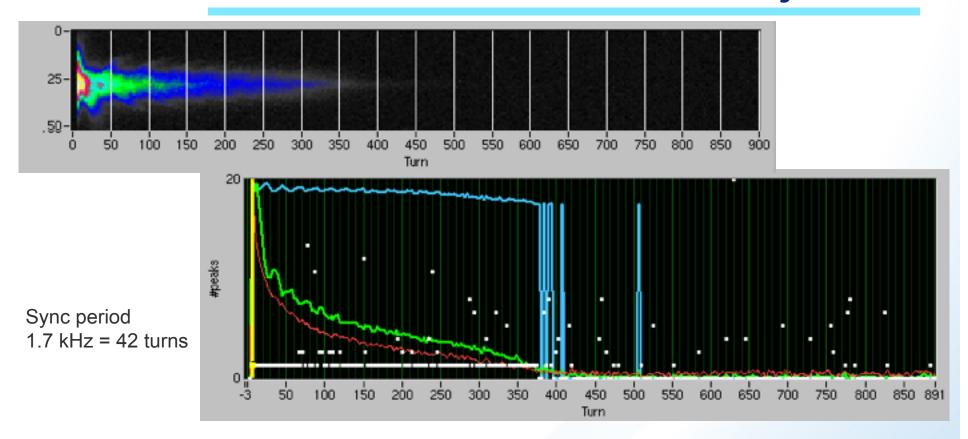
- Even sliding bumps in arcs failed on downramp hysteresis
- Indicates that phase advance/cell is wrong: quad trans func
 - After hysteresis, orbit correction worked with some rescaling



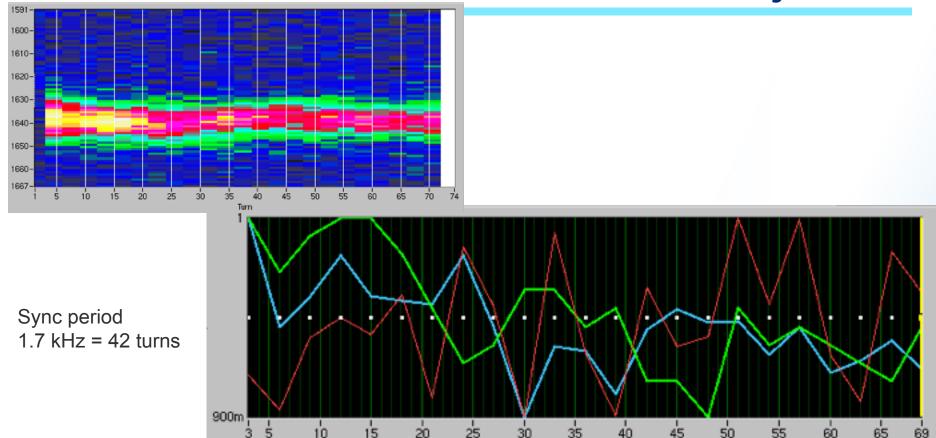
E=2.5 GeV/u ATR Tuning


- Amazingly fast beam back to x/yxf1 (a handful of shots!)
- Retuning for RF capture was painful
- ATR efficiency can be quite good (5-10% stripping losses?)

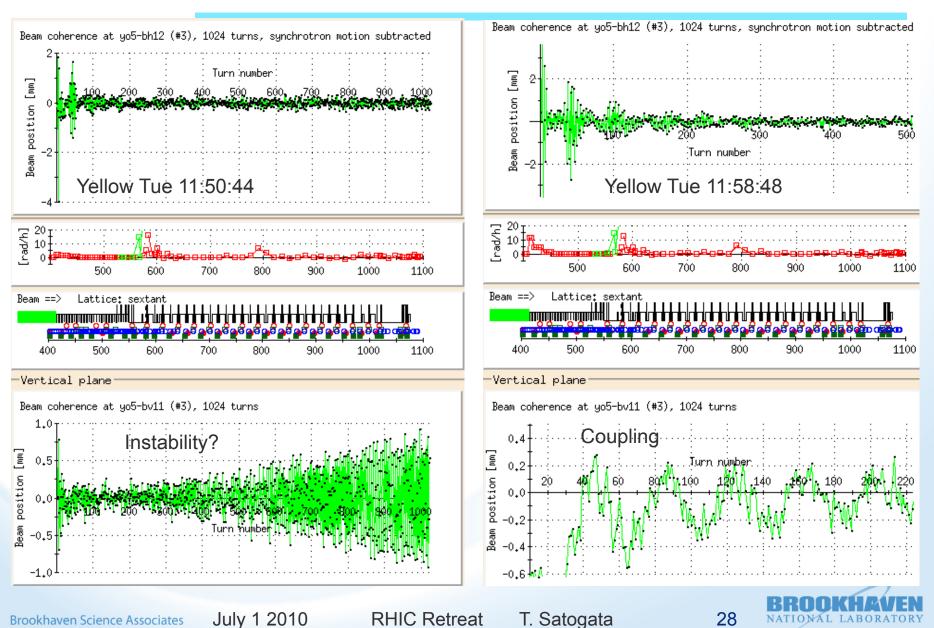
ATR Stripping Efficiency


- Estimates from Peter Thieberger (49 mg/cm² Tungsten foil)
- Inefficiency 3x larger than 3.85 GeV/u, 30x larger than 10 GeV/u

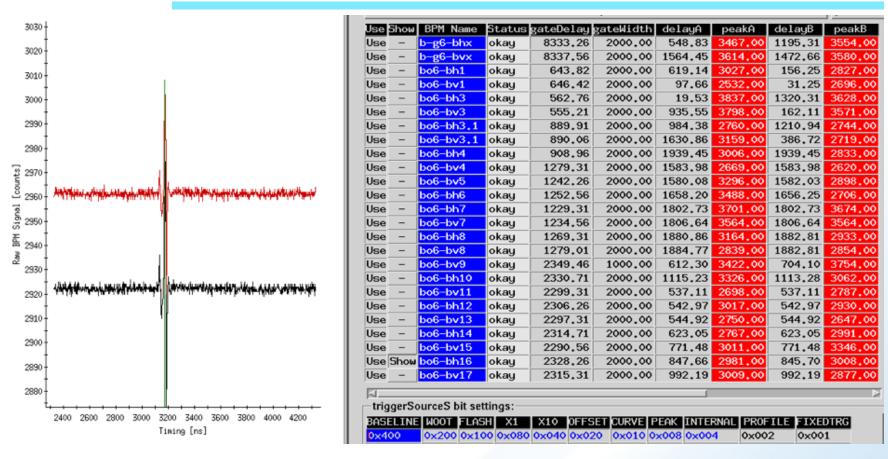
E=2.5 GeV/u Yellow Beam Currents


- No bunched beam achieved on yellow WCM
- Peak DCCT 2e8 unbunched, 6e7 "bunched", 2.5e7 bunched
- Yellow had better unbunched, worse bunched behaviorookheven Science Associates July 1 2010 RHIC Retreat T. Satogata 25 NATIONAL LABORATORY

E=2.5 GeV/u Yellow Injection


- Scanned tunes, chromaticities by over 40 units
- Peak/total intensity still dropped x2 in ~50 turns, gone in 400
- RF on, 16:31 Tuesday afternoon

E=2.5 GeV/u Blue Injection



- Also scanned chromaticities by over 40 units
- Yellow peak and total intensity still dropped very quickly
- RF on, 15:10 Tuesday afternoon

E=2.5 GeV/u TBT data

E=2.5 GeV/u Blue BPM Timing

- Peak intensity about 40-50 counts 1min after injection
- x10-x100 worse signal/noise than normal BPM operation
- No bunched signal visible in yellow ring 1min after injection

E=2.5 GeV/u Recommendations

- Evaluate apertures
 - Modify beam optics at abort aperture
 - Tracking with best guess at nonlinear model
- E=3.85 GeV/u (h=369) beam had physics running
 - Step down gradually (2-3 steps) to E=2.5 GeV/u
 - Deceleration not feasible (changing harmonic number)
 - Be sure AGS/ATR are canonical => better intensity
 - BUT: smaller experiment beam pipes next year
 - Likely that E=2.5 GeV/u is too low; how far can we go?

